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We study the collapse of a transient cavity of air in water created by the impact
of a solid body. Experimentally, we characterize the dynamics of the cavity from its
creation (t = 0) until it collapses (t = τ ) in the limit where inertia dominates viscous
and capillary effects. Theoretically, we find in this regime an approximate analytical
solution which describes the time evolution of the shape of the cavity. This theoretical
solution predicts the existence of two different types of cavities that we also observe
experimentally.

1. Introduction
What happens when a solid body impacts on water?

A few decades ago, this question was of interest for seaplane engineers (von Kármán
1929; Wagner 1932), naval architects (Cointem 1989; Fridman 1998), torpedo de-
signers (May 1952; Richardson 1948) and physicists interested in fast transient phe-
nomena (Worthington 1908). Lately, it has become of interest for mechanicians
interested in the Basilic lizard motion (Glasheen & McMahon 1996b) and physicists
working on granular flows (Thoroddsen & Shen 2001; Lohse et al. 2004).

This question belongs to the general subject of water entry problems which is mainly
composed of two different kinds of studies: the initial stages of contact (Korobkin &
Pukhnachov 1988; Howison, Ockendon & Wilson 1991) and the creation of the
associated cavity (Birkhoff & Zarantonello 1957). The present article belongs to this
second class of studies.

A typical impact is presented in figure 1. This chronophotography presents the
evolution of the cavity during the first 140 ms after the impact of a glass sphere
covered with soot (hydrophobic surface). The radius is R0 = 12 mm and the velocity
U = 2.1 m s−1 (Fr =39). The creation of the cavity extends from image 1 to image 8
where it pinches. We denote the depth of the cavity at pinching H and the position
of the neck Hp . The diameter of the hole at the surface (z = 0) is 2R. If t = 0 stands
for the time at which the sphere touches the interface, the time of pinching is defined
as t = τ .

After the pinching (images 9 to 16) both cavities (0 < z < Hp and Hp <z <H ) retract,
one towards the surface (0 < z < Hp) and the other towards the sphere (Hp < z < H ).
In this article, we focus on the dynamics of the cavity from creation to pinching
(images 1 to 8).

If σ stands for the surface tension, σR2
0 is the order of magnitude of the energy

required to perturbed the surface over the scale R0. Using ρ for the liquid density,
one expects the cavity to be created when the kinetic energy of the impact ∼ ρR3

0U
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Figure 1. Chronophotography of the impact of a sphere (R0 = 12 mm) at U = 2.1m/s (Fr =
39). The time step between images is �t = 9.3 ms. The sphere is coated with carbon soot.

is much larger than this surface energy. The study is thus conducted in the limit of
high Weber number: We ≡ ρU 2R0/σ � 1. This is true as long as the kinetic energy
is not completely dissipated at the impact through viscosity µUR2

0 , where µ is the
dynamic liquid viscosity. This second condition implies that the Reynolds number
Re ≡ ρUR0/µ is much larger than unity. In the example presented in figure 1, we
find We ≈ 750 and Re ≈ 25 000.

In this parameter range (We � 1, Re � 1), Glasheen & McMahon (1996a) sum-
marize the experimental results obtained during the impact of a disk (radius R0) in
water as:

the depth of the cavity scales as H/R0 ≈ 2.297 U/
√

gR0;
the time for pinching scales as τ ≈ 2.285

√
R0/g and is reported to be ‘nearly

independent of the velocity’.
These experimental results are obtained for ‘low Froude numbers’: 1 � U 2/gR0 � 80.
No theoretical model is proposed to account for these laws.

On the other hand, considering the impact in soft sand, Lohse et al. (2004) propose
an hydrodynamic approach to describe the cavity created by the impact of a solid
sphere in sand and propose the following scaling behaviour for its depth: H/R0 ∼
Fr1/3.

In the present article, we first present experimental results on cavities created in
water by spheres and cylinders. A model is then proposed to account for the experi-
mental observations and to understand the origin of the two different laws proposed
by Glasheen & McMahon (1996a) & Lohse et al. (2004).

2. Experimental set-up
2.1. Synopsis of the experiment

A sketch of the experiment is presented in figure 2(a): the solid sphere (or cylinder)
is initially fixed at a height H0 above the water surface and is maintained at rest
using a suction disk (holding device). Suddenly, the suction is released and the
sphere (or cylinder) accelerates under its own weight towards the water and impacts
at t = 0 with a velocity close to U ≈

√
2gH0. The velocity is precisely measured at
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Figure 2. Sketch of the experimental set-up.

Sphere R0 (mm) M (g) Cylinder R0 (mm) L (g) M (g)
S1 6 7 C1 6.1 100 21.4
S2 7.8 4.7 C2 10.1 200 31.2
S3 12 18 C3 20.1 400 243.2
S4 20 32

Table 1. Geometrical characteristics of spheres and cylinders.

H0 (m) R0 (mm) Re ≡ UR0

ν
We ≡ ρU 2R0

σ
Fr ≡ U 2

gR0

0.1 6 8.4 × 103 168 33
1 6 2.6 × 104 1680 330

0.1 20 2.8 × 104 560 10
1 20 8.8 × 104 5605 100

Table 2. Orders of magnitude of the characteristic non-dimensional numbers, Reynolds,
Weber and Froude, obtained for two different spheres released from two different heights.

the impact using a high-speed video camera, which also records the whole impact
sequence.

2.2. Characteristics of the spheres and cylinders

The geometrical characteristics of the spheres and cylinders are presented in table 1.
Their radius R0 ranges from 6 mm to 20 mm. Their impact in water (density
ρ ≈ 103 kgm−3, surface tension σ ≈ 0.07 kg s−2, kinematic viscosity ν ≈ 10−6 m2 s−1)
is characterized by three non-dimensional numbers: Reynolds Re ≡ UR0/ν, Weber
We ≡ ρU 2R0/σ and Froude Fr ≡ U 2/gR0, respectively comparing inertia to viscous,
capillary and gravitational forces. The range of variation of these numbers in our
experiment is presented on table 2. We observe that the whole study is conducted in
the limit of high Reynolds and Weber numbers and for ‘moderate’ Froude numbers.
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(a)

(b)

Figure 3. Chronophotography of the impact of (a) a smooth sphere of glass (R0 = 12 mm)
and (b) the same sphere coated with soot, at U = 2.1 m s−1 (Fr = 39). The time step between
images is �t =9.3 ms in both sequences.

3. Experimental results
3.1. Threshold of entrainment

In figure 3 we present the impact of a sphere (R0 = 12 mm) at the velocity U = 2.1 m s−1

(Fr = 39) that is either hydrophilic (clean glass surface in figure 3a), or hydrophobic
(the same glass sphere coated with soot in figure 3b). We observe that the cavity
shown in figure 1 only exists in the ‘hydrophobic’ case.

The same experiment conducted with a higher impact velocity U = 8 m s−1

(Fr = 543) is presented in figure 4. Here, we do not observe any significant difference
between the cavity created by the hydrophilic sphere (figure 4a) and the one created
by the hydrophobic sphere (figure 4b).

From both experiments, we can conclude that the cavity presented in figure 1 only
exists above a threshold velocity, the value of which depends on the surface state.
Above this velocity, no significant difference can be observed on the shape of the
cavity created.

The hydrophilic (or hydrophobic) property of the surface results from its roughness
and wetting properties (de Gennes, Brochard & Quéré 2004). Here, we simply note
that the hydrophobicity of the surface plays a role in the threshold of entrainment,
without entering into the detail of the specific role of wetting and roughness. This
specific study is reported in Duez et al. (2007) and Eggers (2007).

To qualitatively understand the influence of the surface hydrophobicity on the
threshold of entrainment, one must focus on the dynamics of the liquid film which
develops around the sphere during the first instants of the contact between the sphere
and the interface. This is done in figure 5, where we show that the liquid film (the
position of which is indicated with arrows) moves along the surface as the sphere
crosses the interface. In the hydrophilic case (figure 5a) the film reaches the ‘north
pole’ in a time τfilm smaller than the time 2R0/U needed for the sphere to cross the
interface. In the second sequence (figure 5b) the liquid film created at the impact does
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(a)
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Figure 4. Chronophotography of the impact of (a) a smooth sphere of glass (R = 12 mm) and
(b) the same sphere coated with carbon soot at U = 8 m s−1 (Fr = 543). The time step between
images is �t = 3.65 ms.

(a)

(b)

Figure 5. Chronophotography of the impact of (a) a hydrophilic sphere of glass (R0 = 7.8 mm)
and (b) the same sphere coated with carbon soot (hydrophobic) at U = 1.34 m s−1 (Fr =23).
The time step between images is �t = 3.3 ms. The arrows indicate the position of the liquid
film over the sphere.

not converge towards the ‘north pole’ and the hydrophobic sphere (the same glass
sphere but coated with soot) entrains air and creates the cavity.

The influence of the surface roughness on the creation of the cavity has been known
since the pioneering work of Worthington & Cole (1900) as can be seen on figure 6.
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Figure 6. Figures extracted from Worthington & Cole (1900): (a) impact in water of a smooth
sphere (b) impact at the same conditions of a rough sphere (c) proposed mechanism for the
influence of the roughness.

The film dynamics observed for smooth sphere impact is presented in figure 6(a),
that of the rough sphere in figure 6(b) and a proposed scenario to understand the
influence of the roughness is sketched in figure 6(c). That landmark study is more
complete than the present one on the transition from smooth to rough since it
discusses the influence of the liquid viscosity, surface tension, air pressure, and even
sphere temperature. Here, we just want to underline that the origin of the transition
lies in the dynamics of the thin film which develops in the very first instants of the
impact. The study of the initial stage of contact belongs to the first kind of studies
mentioned above, dedicated to water entry (Oliver 2002). The threshold problem is
outside the scope of the present work and in the remaining part of the article, we
focus on the dynamics of the transient cavities and only consider cases where the
impact velocity is above the critical velocity of entrainment.

3.2. Influence on the cavity of the impact velocity U for a fixed radius R0

The influence of the impact velocity for a fixed radius (R0 = 7.8 mm) is presented
in figure 7 for three different velocities (U = 1.3, 2.4 and 3.7 m s−1). The time step
between the images is constant for the three chronophotographies (�t = 7.3 ms) and
the dashed lines indicate the constant velocity limits. The first observation is that
the cavity is created with an almost constant velocity up to the pinching. There is
however a weak deceleration of the sphere associated to the liquid entrainment which
can be observed through the deviation from the dashed line.

The second striking observation from figure 7 is that the pinching of the cavities
occurs at the same time for the three different velocities τ ≈ 52 ms.

Taking the relative cavity depth as H/R0, we measured H/R0 ≈ 7.5 for
U = 1.3 m s−1, H/R0 ≈ 13 for U = 2.4 m s−1 and H/R0 ≈ 17 for U =3.7 m s−1. The
cavity depth seems to increase linearly with the velocity.

Taking the relative size of the hole at the surface as R/R0, we measure R/R0 ≈ 1.9
for U = 1.3 m s−1, R/R0 ≈ 3 for U = 2.4 m s−1 and R/R0 ≈ 3.3 for U = 3.7 m s−1. The
size of the hole increases with the velocity but less than linearly.

Regarding the neck location, the three chronophotographies indicate that Hp is of
the order of H/2.

3.3. Influence on the cavity of the radius R0, for a fixed velocity U

The influence of the radius, for a fixed velocity U =1.3 m s−1, is presented in figure 8.
The time to pinching is τ ≈ 52 ms for R0 = 7.8 mm and increases with R0 to reach
τ ≈ 66 ms for R0 = 12 mm.
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(a)

(b)

(c)

Figure 7. Influence of the impact velocity U for a fixed radius R0 = 7.8 mm. The time step
between the images is constant for the three chronophotographies �t = 7.3 ms: (a) U =

1.3 m s−1, Fr = 22; (b) U = 2.4 m/s−1, Fr = 80; (c) U = 3.7 m s−1, Fr = 188. The dashed lines
indicate the constant velocity limits.

(a)

(b)

Figure 8. Influence of the radius R0 for a fixed impact velocity U = 1.3 m s−1. (a) R0 = 7.8 mm,
Fr = 22. The time step between images is �t = 7.3 ms. (b) R0 = 12 mm, Fr =14.3. The time step
between images is �t =9.3 ms.
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Figure 9. Impact of a cylinder (R0 = 10 mm) at U = 1.06 m s−1 (Fr = 11). The time step
between images is �t =4ms.

The relative depth H/R0 decreases with R0: we measure H/R0 ≈ 7.5 for R0 = 7.8 mm
and H/R0 ≈ 6.7 for R0 = 12 mm.

Finally, the relative crater size R/R0 remains almost constant: we measure R/R0 ≈
1.9 for both cases.

3.4. Impact of cylinders

An example of impact with cylinders is presented in figure 9 where a cylinder
(R0 = 10 mm) impacts at U = 1.06 m s−1 (Fr = 11). When the back of the cylinder
crosses the interface, it entrains air and forms a cavity which pinches in a characteristic
time τ ≈ 28 ms.

Qualitatively, the features of this cavity are similar to those of a sphere and shown
in figure 1. Looking more carefully at the pictures, one may however see at least three
differences:

(i) the radial extent of this cavity never exceeds the size of the cylinder;
(ii) the crater at the surface scales with the diameter of the cylinder (R/R0 ≈ 1)

and does not grow in time;
(iii) the position of the neck is not at H/2 but closer to the interface (Hp/H ≈ 0.35)

We examine more quantitatively the differences between the cavities created by spheres
and cylinders in § 5.

4. Model
4.1. The Besant (1859)–Rayleigh (1917) problem

The first problem we consider, in order to model the cavity collapse, is the
classical Besant–Rayleigh problem (Besant 1859; Rayleigh 1917): “An infinite mass of
homogeneous incompressible fluid acted upon by no forces is at rest, and a spherical
portion of the fluid is suddenly annihilated; it is required to find the instantaneous
alteration of pressure at any point of the mass, and the time in which the cavity will
be filled up, the pressure at an infinite distance being supposed to remain constant”.
Experimentally, this mind experiment can be approached using collapsing bubbles,
as presented in figure 10 extracted from Batchelor (1967).

This classical Besant–Rayleigh problem is contained in textbooks and review
articles (Brennen 1995; Brenner, Hilgenfeldt & Lohse 2002) and its resolution has
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Figure 10. (a) Sketch of the Besant–Rayleigh problem. (b) Figure extracted from Batchelor’s
(1967) textbook: Photographs of a collapsing cavity in a stationary vessel of water at intervals
of 2 10−4 s. The cavity was formed by putting the water in tension for a brief period, with a
minute bubble of gas released by electrolysis as the nucleus. During the period covered by the
photographs the pressure difference p0 − pv was maintained at 0.051 atm. The mean radius of
the cavity in the first photograph is 0.69 cm, and the minimum volume occurs between the 10th
and 11th photographs. Photographs 11 to 20 show a rebound with characteristic non-spherical
form. (Unpublished photographs by T. B. Benjamin and A. T. Ellis.)

been undertaken in more detail than the presentation below (Hilgenfeldt et al. 1998).
The only purpose of the present treatment is to introduce a new analytical approach
and check its validity on a classical problem. The method is then applied in § 4.2 to
analyse the cylindrical cavity limit for which no analytical solution is known.

In figure 10(b) the Reynolds number can be evaluated as Re ≈ R2/τ ν ≈ 25 000,
where R ≈ 0.69 cm is the initial size of the cavity and τ ≈ 2 ms is the time of collapse.
In this high-Reynolds-number limit the motion of the liquid can be described by the
Euler equation:

∂u
∂t

+ grad u · u = − 1

ρ
grad p. (4.1)

Since the fluid is initially at rest, the motion is irrotational at all times and its velocity
can be described through a potential φ: u = grad φ. Equation (4.1) can be integrated
in this limit and leads to the so-called generalized Bernoulli equation:[

∂φ

∂t
+

u2

2
+

p

ρ

]B

A

= 0 (4.2)

where A and B stand for two points in the fluid. For the Besant–Rayleigh problem
sketched in figure 10(a), point A is chosen behind the cavity surface (rA = R(t)) and
point B in a region ‘far’ from the cavity where there is no motion. In this case,
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equation (4.2) can be written:

∂φ

∂t

∣∣∣∣A +
u2

A

2
=

p∞

ρ
. (4.3)

Here, we assume that the pressure p∞ ‘far’ from the cavity is constant and large com-
pared to the pressure inside the cavity. As usual, this momentum equation must be
completed by the equation of mass conservation which reduces, with our assumptions
of incompressible and potential flow, to �φ =0. In this limit, and using the spherical
symmetry of the problem, the velocity u at any point r > R can be deduced from the
interface location R(t) and its velocity Ṙ through the relation:

u =

(
R

r

)2

Ṙ, (4.4)

from which we find φ(r, t) = −R(t)2Ṙ/r and can deduce the equation for the cavity
collapse:

RR̈ +
3

2
Ṙ2 = − p∞

ρ
(4.5)

which must be integrated with the initial conditions R(t = 0) = R0 and Ṙ(t = 0) = 0.
Solving in Ṙ, equation (4.5) can be integrated once as

Ṙ2 =
2

3

p∞

ρ

[(
R0

R

)3

− 1

]
(4.6)

from which we obtain the time of collapse τ :

τ =

∫ R0

0

dR√
2
3
(p∞/ρ)

[
(R0/R)3 − 1

] = 0.914
R0√
p∞/ρ

. (4.7)

The trajectory R(t) obtained through the integration R(t) =
∫ t

0
Ṙ dt is compared by

Batchelor (1967) to the experimental collapse presented on figure 10 and is found
in fair agreement up to the minimal radius. The bouncing of the cavity which is
observed on figure 10(b) after the minimal radius is related to the compression of the
gas during the bubble collapse, an effect which is not accounted for in the present
rough theory. If one now considers the singularity R → 0, equation (4.6) shows that

R(t) ∼
(

2

3

p∞

ρ
R3

0

)1/5

(τ − t)2/5. (4.8)

Summary

In this classical example, one obtains an exact solution for the velocity (4.6), but no
analytical expression for the evolution R(t). This evolution must be obtained through
a numerical integration. There are cases, such as the cylindrical cavity, where such an
analytical expression, even approximate, can be useful. This is the motivation for the
method we develop now, the accuracy of which will be tested on the Besant–Rayleigh
problem.
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Figure 11. (a) Comparison between the exact solution of the Besant–Rayleigh problem
(numerical integration of (4.6)) (solid line) and the approximate solution (4.11) (dashed line):
(a) R/R0(t/τ0) presented on a linear scale (b) 1 − R/R0(t/τ0) presented on a log-log scale.

Presentation of the approximate analytical method

Using the observation that R̈2 ≡ d2R2/dt2 = 2(RR̈ + Ṙ2), one can re-write the equ-
ation for the cavity (4.5) as

R̈2 + Ṙ2 = −2 p∞

ρ
. (4.9)

Since Ṙ is null initially, the dynamics of the cavity is initially described by

R̈2 ≈ −2 p∞

ρ
, (4.10)

the solution of which is

R = R0

√
1 − (t/τ0)2 (4.11)

with τ0 ≡ R0/
√

p∞/ρ. This approximate analytical solution holds provided Ṙ2 remains
smaller than 2p∞/ρ, that is provided (t/τ0)

2/[1 − (t/τ0)
2] 	 2. This solution is thus

expected to be valid at the beginning of the collapse and is expected to fail close to
the singularity.

A comparison between the exact trajectory R(t) (obtained numerically through the
integration of equation (4.6)) and the approximate solution (4.11) is presented in
figure 11, with a linear scale in 11(a) and a log-log scale in 11(b). As expected, the
behaviour of the approximation is good for small time and deviate from the exact
solution for times larger than t/τ0 > 0.8. If one considers the time of collapse, the
approximate solution gives t = τ0 which is 9 % above the exact value (equation (4.7)).

The limits of the approximate analytical solution are reached at the singularity: at
the singularity, the approximate solution leads to

R(t) ∼
(

4R2
0p∞

ρ

)1/4 √
τ0 − t (4.12)

which is different from the exact behaviour (4.8), the scaling in time being 1/2 instead
of 2/5. From equation (4.9), it is seen that at the singularity, the second term Ṙ2

diverges while the third term (the pressure) remains constant. This can only be
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Figure 12. Conventions used to describe the dynamic of the cylindrical cavity.

achieved if the first two terms compensate, that is if R̈2 + Ṙ2 = 0, or R ∼ (τ − t)2/5. As
already underlined, the approximate solution only holds as long as the second term
remains small compared to the third one.

To conclude this section on the validity of the approximate equation (4.10) in
describing the dynamics of the cavity collapse, we observe that most of the dynamics
is captured except at the singularity.

4.2. The cylindrical cavity problem

We now turn to the cylindrical cavity problem presented in figure 12: a solid body
impinges vertically through the surface and creates an axisymmetric cavity which first
expends radially prior to closure. The characteristics of the cavity have been discussed
in § 3 and we present here the modelling of the dynamics using the notation presented
in figure 12.

Following the approach used to solve the Besant–Rayleigh problem, we first
complete the generalized Bernoulli equation, taking gravity into account:[

∂φ

∂t
+

u2

2
+

p

ρ
− gz

]B

A

= 0. (4.13)

Choosing A in the liquid behind the interface and B at the same height (zB = zA = z)
but far† from the hole we obtain

∂φ

∂t

∣∣∣∣
R

+
Ṙ2

2
= gz. (4.14)

In this expression, we have assumed that the pressure in the air cavity is constant,
equal to p0, and that surface tension is negligable. The first assumption holds provided
ρairU

2 remains small compared to ρgR0. This constraint imposes a limit on the Froude
number: Fr <ρ/ρair ≈ 800. This criterion is satisfied in all the experiments presented
in the present article. The second assumption on the role of surface tension holds
provided σ/R0 is small compared to ρgR0. This implies that the geometrical length

† Far means that B is chosen ‘far enough’ from the hole so that no motion is observed at B:
both the velocity and the acceleration are small compared to the velocity and acceleration at A.
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Figure 13. Comparison between the cavity observed experimentally with a solid sphere
of radius R = 11.5 mm and Froude number Fr =52 (left-hand image) and the numerical
integration of equation (4.18) (right-hand image).

R0 must be chosen large compared to the capillary length a ≡
√

σ/(ρg). The present
study is conducted in this limit R0/a � 1.

With these assumptions, the challenge now is to make an appropriate choice for
the potential φ: a direct extension of the method used to solve the Besant–Rayleigh
problem consists of assuming a purely radial motion ru = RṘ, which leads to

φ = RṘ ln(r/R∞), R < r <R∞ (4.15)

= 0, r > R∞. (4.16)

In this expression for the velocity potential, R∞ is a function of time which can
be evaluated through an assumption on the total kinetic energy: At a depth z, we
consider a layer of liquid of thickness dz. The total kinetic energy in this layer is

T ≡ 1
2

∫ R∞
R

ρ 2πr dr dz u2. Using the above evaluation of the velocity we can integrate

this expression and find T = πρ dz R2Ṙ2 ln(R∞/R). Since all the motion is radial, this
kinetic energy comes from the motion of the liquid layer πR2 dz. Assuming that
T ≈ πR2 dz Ṙ2, this suggests that ln(R∞/R) ≈ 1, which states that the motion in the
liquid extends over a region of the order of the local size of the hole R (R∞ ≈ 2.7 R).

Using this expression for the potential, we can simplify the momentum
equation (4.14) and get the equation for the cavity:

RR̈ + 3
2
Ṙ2 = −gz. (4.17)

The only difference with the equation (4.5) obtained for the Besant–Rayleigh problem
is that the pressure is not constant but depends linearly on z. At a given z, this equ-
ation for the cylindrical cavity can be integrated once:

Ṙ2 = αU 2

(
R0

R

)3

+
2

3
gz

[(
R0

R

)3

− 1

]
(4.18)

where we have used the limit condition Ṙ2 (R = R0) = αU 2 with α a constant smaller
than 1. Since H = Ut is the depth of the cavity at time t , we integrate equation (4.18)
numerically from z = 0 to z = H and for each z location from t = 0 to (H − z)/U ,
using the initial condition R(t = 0) = R0. The results obtained are compared to the
experimental observations in figure 13, where the solid sphere (R = 11.5 mm) impacts
with a Froude number Fr = 52. The numerical integration is done with α = 0.1. The
comparison reveals that the general features observed experimentally are captured
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by the model: the cavity slightly expand radially during the creation of the cavity,
prior to a pinching which occurs roughly at mid distance between the surface and the
bottom of the hole.

This comparison enables us to check the validity of the assumptions used to guess
the potential.

Approximate analytical solution for the time evolution of the shape

We still have to integrate equation (4.18) numerically to obtain the evolution of the
shape of the cavity and we do not have an analytical expression for this shape which
would allow us to determine its main characteristics: when does the pinching occur?
At which location? How does the depth of the cavity (at pinching) vary with the
Froude number? To answer these basic questions we have developed an approximate
analytical solution, the validity of which has been discussed in § 4.1. The method
consists of making the approximation RR̈+3/2Ṙ2 ≈ R̈2/2. This reduces equation (4.17)
to

R̈2 ≈ −2gz (4.19)

which can be integrated twice:

R2 = R2
0 + 2

√
αR0Ut − gzt2 (4.20)

where we have used the initial conditions R(t = 0) = R0 and Ṙ(t = 0) =
√

αU . This
equation (4.20) describes the time evolution of the radius of the cavity at the depth
z, starting at the time when the impactor reach z. When the impactor reaches the
depth H > z, the radius of the cavity at z is obtained from equation (4.20), taking
t ≡ (H −z)/U . This is the case as long as the velocity is constant during the creation of
the cavity. Considering the experiments presented in figures 1, 3 and 7, this assumption
is reasonable. The whole shape of the cavity when the impactor reaches H is thus
obtained from equation (4.20) by changing t to (H − z)/U and leads to

R2 = R2
0 + 2

√
αR0U

(
H − z

U

)
− gz

(
H − z

U

)2

. (4.21)

Using η ≡ H/R0, ε ≡ 1/Fr , z̄ ≡ z/H and R̄ ≡ R/R0, the cavity shape can be written
in a dimensionless form:

R̄2 = 1 + 2
√

αη(1 − z̄) − εη3z̄(1 − z̄)2. (4.22)

This approximate analytical solution is compared to the shape observed experi-
mentally in figure 14. The main features of the cavity are captured by this analytical
solution. We can now use this expression for the cavity shape to analyse in more
detail the characteristics of the cavity.

The first question we address is the depth of the cavity at pinching. From
equation (4.22), we seck η such that there is a z̄ value where R = 0. This can be done
by looking for the extremal locations (where dR̄/dz̄ = 0). According to equation (4.22)
there can be two such locations:

z̄min =
2

3
− 1

3

√
1 − 6

√
α

εη2
and z̄max =

2

3
+

1

3

√
1 − 6

√
α

εη2
(4.23)

where z̄min and z̄max respectively correspond to the location of the minimum and
maximum radial extent of the cavity. Since we are looking for the pinching position,



Dynamics of transient cavities 15

1 2 3 4

5 6 7 8

Figure 14. Comparison between the cavity observed experimentally with a solid sphere of
radius R = 11.5 mm and Froude number Fr = 52 and the analytical solution (4.22).

we consider the minimum radius which can be written:

R̄2
min = 1 +

2

9

√
αη

⎡
⎣3 + 2

√
1 − 6

√
α

εη2

⎤
⎦ − 2

27
εη3

⎡
⎣1 +

√
1 − 6

√
α

εη2

⎤
⎦ . (4.24)

At pinching, R̄min = 0 and equation (4.24) gives the relation between the depth of the
cavity (η ≡ H/R0) and the Froude number (ε ≡ 1/Fr). Two limits lead to simplified
results:

(i) α =0
This limit corresponds to cavities created with no radial velocity. Experimentally,
this limit can be achieved at the rear of long cylinders. In this limit, equation (4.24)
reduces to

η =

(
27

4

1

ε

)1/3

. (4.25)

In this limit, the depth of the cavity thus increases as the 1/3 power of the Froude
number, that is as U 2/3. From equation (4.23), we also see that the pinching occurs
at Hp/H =1/3.
These properties are consistent with the regime observed by Lohse et al. (2004) during
the impact in soft sand.

(ii) α 
= 0 and εη2 = O(1)
When α is finite, the term

√
αη in equation (4.24) can become larger than unity since

η � 1. At the singularity (Rmin = 0), the term in εη3 must compensate the term of
order

√
αη and we deduce that εη2 =O(1).

In this limit, the pinching R̄min = 0 is achieved when the last two terms on the
right-hand side of equation (4.24) are equal to each other. This is achieved for

η =

(
8
√

α

ε

)1/2

. (4.26)

In this limit, the depth of the cavity increases as the square root of the Froude
number, that is linearly with the velocity. From equation (4.23), we also find that the
pinching location is Hp/H = 1/2.
These properties are consistent with the experimental results obtained by Glasheen
& McMahon (1996a). A closer comparison is given below.

The characteristics of the cavity at pinching are summarized on figure 15 for the
two different regimes identified. The transition between the two regimes is expected
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(a) (b)

H/R0 ∞ Fr1/3 H/R0 ∞ √Fr

Hp/H = 1/3 Hp/H = 1/2

R/R0 = 1 R/R0 ∞ Fr
1/4

Figure 15. Characteristics of the cavities at the pinching for the two limits (a) α = 0 and
(b) α 
= 0 and εη2 = O(1).

102

101

100

100 101 102 103 104

Fr
100 101 102 103

Fr

R/R0

H/R0

(a) (b)

0

0.2

0.4

0.6

0.8

1.0

Hp

H

Figure 16. Characteristics of the cavities created by spheres: (a) Evolution of the reduced
depth H/R0 and reduced crater size R/R0 as a function of the Froude number for different
sphere size: �, R0 = 6 mm; �, R0 = 7.8 mm; �, R0 = 12 mm. The solid line is the law

H/R0 =
√

(8
√

α)Fr , plotted for α = 0.1. The dashed line is the law R/R0 = 25/4α3/8Fr1/4,
plotted with α = 0.1. (b) Evolution of the reduced neck location Hp/H as a function of the
Froude number for different sphere sizes as in (a). The solid line is the law Hp/H = 1/2.

when the second term on the right-hand side of equation (4.24) becomes larger than 1.
This condition implies that the first regime (α = 0) can only be observed if α 	 0.3ε2/3.

5. Comparison between theory and experiments
Experimentally, we have tried to access both regimes using cylinders and spheres;

as shown on figure 5(b) the impact of spheres is characterized by α > 0, whereas the
cavity created behind cylinders (figure 9) can be characterized by α ≈ 0.

5.1. Characteristics of the cavity at pinching

We first consider the cavities created by the impact of spheres. The measured reduced
depth of the cavity (H/R0) obtained with different spheres is presented in figure 16(a)
as a function of the Froude number. This reduced depth increases as Fr1/2 as predicted
by equation (4.26). More quantitatively, this equation is plotted as a solid line for
the value α =0.1. This theoretical evaluation of the cavity depth is in reasonable
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Figure 17. Characteristics of the cavities created by spheres: (a) Evolution of the time at
pinching τ (ms) as a function of the Froude number for different sphere size: �, R0 = 6mm; �,
R0 = 7.8 mm; �, R0 = 12 mm. The solid lines are to guide the eye. (b) Evolution of the time at
pinching τ (ms) as a function of the time

√
R0/g. The solid line is the best fit τ = 2.06

√
R0/g.

agreement with our experimental data. With α = 0.1 the theoretical law (4.26) is

H/R0 =
√

(8
√

α)Fr ≈ 1.6
√

Fr , which is close to the one obtained experimentally by

Glasheen & McMahon (1996a) for impacting disks (radius R): H/R ≈ 2.297
√

Fr .
The scaling in Froude number is the same and the prefactor is larger, which suggest
that the value of α depends on the geometry of the solid body.

The measured reduced crater size (R/R0) is also presented in figure 16(a) and
shows a Fr1/4 dependence. The law derived in the limit α 
= 0 and εη2 = O(1) is
R/R0 ≈ 25/4α3/8Fr1/4. It is plotted as a dashed line and is in good agreement with
our experimental data.

The reduced neck position Hp/H is presented in figure 16(b) as a function of
the Froude number. The dispersion of the data is important but we notice no
systematic variation of the reduced neck position with the Froude number but rather
a constant value close to 0.45, which is not far from the value 1/2 predicted by the
theory.

The results obtained with spheres for the time τ at pinching are presented in
figure 17. In figure 17(a) we recover the observation made from figure 7 that the time
at pinching τ does not depend on the Froude number. Here, we notice that τ increases
with the radius of the sphere. This evolution can be understood from the theoretical
results obtained in the limit α 
= 0 and εη2 = O(1) and summarized in figure 15(b).
If H/R0 ∼ Fr1/2, the time at pinching, τ ∼ H/U , is independent of the velocity
and depends linearly on

√
R0/g. The relation τ (

√
R0/g) is presented in figure 17(b).

The linearity is achieved and the best fit reveals that τ ≈ 2.06
√

R0/g. This value of
2.06 is higher than the one predicted by the theory for α = 0.1 (τ = 1.6

√
R0/g). The

discrepancy probably originates in the fact that the sphere does not have an exactly
constant velocity as assumed by the above theoretical model.

Comparing with the experimental results of Glasheen & McMahon (1996a)
obtained with an impacting disk (radius R) τ ≈ 2.285

√
R/g we observe that the

law is similar with a slight difference in the prefactor, which again suggest that the
prefactor depends on the parameter α, the value of which depends on the geometry.
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Figure 18. Characteristics of the cavities created by cylinders: (a) Evolution of the reduced
depth H/R0 and reduced crater size R/R0 as a function of the Froude number for different
cylinder size: �, R0 = 6.1 mm; �, R0 = 10.1 mm; �, R0 = 20.1 mm. The solid line is the law
H/R0 = (27/4 Fr)1/3 derived theoretically in the limit α =0. The dashed line is the law R/
R0 = 1. (b) Evolution of the reduced neck location Hp/H as a function of the Froude number
for different: cylinder sizes as in (a). The solid line is the law Hp/H =1/3 derived in the limit
α = 0 .

The characteristics of the cavities created by cylinders are presented in figure 18:
the reduced depth H/R0 is ploted in figure 18(a) as a function of the Froude
number. The solid line represents the law H/R0 = (27/4 Fr)1/3 derived theoretically
(equation (4.25)). It is 25% above the experimental values but seems to capture the
evolution in Froude number.

The reduced crater size R/R0 is also presented on figure 18(a). No clear dependence
on Froude number is observed, the data being scattered around a mean value of 1.3.
This is above the theoretically expected value of R/R0 = 1 but does not contradict
the prediction of no dependence on Froude number with a value close to the body
size.

Finally, the reduced neck position Hp/H is presented on figure 18(b) as a function
of the Froude number. Unlike the cavities created by spheres where Hp/H ≈ 0.5, we
observe here that the neck location is closer to the value Hp/H ≈ 0.35, which is not
far from the theoretical prediction Hp/H =1/3.

6. Conclusion
We report the study of transient cavities created by the impact of a solid body in

water at high Reynolds and high Weber numbers. In this limit, we show theoretically
that an approximate analytical solution can be derived to describe the evolution in
time of the cavity, from its creation to pinching.

This approximate analytical solution predicts the existence of two very different
cavity dynamics, one being characterized by a reduced depth evolution H/R0 ∼ Fr1/2

and the other by the evolution H/R0 ∼ Fr1/3. The reduced crater size is also different,
one predicting R/R0 ∼ Fr1/4, and the other R/R0 ∼ 1.

Experimentally, we have found both solutions, using spheres for the first regime
and cylinders for the second. This geometrical parameter enables the limit condition
at the contact between the solid body and the liquid, to be changed which controls
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the nature of the cavity dynamics. The characteristics of the experimental cavities are
in fair agreement with those expected from the theory.
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